
WEDDERBURN’S FACTORIZATION THEOREM

APPLICATION TO REDUCED K-THEORY

R. Hazrat

Abstract. This article provides a short and elementary proof of the key theorem

of reduced K-theory, namely Platonov’s Congruence theorem. Our proof is based on
Wedderburn’s factorization theorem.

Let D be a division algebra with center F . If a ∈ D is algebraic over F of degree
m, then by Wedderburn’s factorization theorem, one can find m conjugates of a
such that the sum and the product of them are in F . This observation has been
used in many different circumstances to give a short proof of known theorems of
central simple algebras. (See [8] for a list of these theorems.) Here we will use this
fact to prove Platonov’s congruence theorem.

The non-triviality of the reduced Whitehead group SK1(D) was first shown by
V. P. Platonov who developed a so-called reduced K-theory to compute SK1(D) for
certain division algebras. The key step in his theory is the “congruence theorem”
which is used to connect SK1(D) where D is a residue division algebra of D to
SK1(D). This in effect enables one to compute the group SK 1(D) for certain
division algebras. (See [5] and [6].)

Before we describe the congruence theorem, we employ Wedderburn’s factoriza-
tion theorem to obtain a result regarding normal subgroups of division algebras.

Suppose that D has index n. Let N be a normal subgroup of the group of units
D∗ of D. Let a ∈ N with the minimal polynomial f(x) ∈ F [x] of degree m. Then
from the theory of central simple algebras we have the following equality,

(1) f(x)n/m = xn − TrdD/F (a)xn−1 + · · · + (−1)nNrdD/F (a),

where NrdD/F : D∗ → F ∗ is the reduced norm, TrdD/F : D → F is the reduced
trace and the right hand side of the equality is the reduced characteristic polynomial
of a. (See [7], §9.)
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Using Wedderburn’s factorization theorem for the minimal polynomial f(x) of
a, one obtains f(x) = (x− d1ad−1

1 ) · · · (x− dmad−1
m ) for certain di ∈ D. Now from

the equality (1), it follows that NrdD/F (a) is the product of n conjugates of a.
Since N is a normal subgroup of D∗, it follows that NrdD/F (a) ∈ N . Therefore
Nrd|N : N −→ Z(N) is well defined, where Z(N) = F ∗ ∩ N is the center of the
group N .

Before stating the main Lemma, we fix some notation.
Let µn(F ) denote the group of n − th roots of unity in F and let Z(D ′) denote

the center of the commutator subgroup D ′ of D∗. Let D(1) stand for the kernel
of the reduced norm. Observe that µn(F ) = F ∗ ∩ D(1) and Z(D′) = F ∗ ∩ D′. If
G is a group, denote by Gn the subgroup of G generated by all n − th powers of
elements of G. If H and K are subgroups of G, denote by [H,K] the subgroup of G
generated by all mixed-commutators [h, k] = hkh−1k−1, where h ∈ H and k ∈ K.

We are now in a position to state our main lemma which is interesting in its own
right.

Lemma 1. Let D be a division algebra with center F , of index n. Let N be a

normal subgroup of D∗. Then Nn ⊆ (F ∗ ∩N)[D∗, N ].

Proof. Let a ∈ N . As stated above, using Wedderburn’s factorization theorem,
NrdD/F (a) = d1ad1

−1 · · · dnadn
−1. But

d1ad1
−1 · · · dnadn

−1 = [d1, a]a[d2, a]a · · · [dn, a]a = anda

for some da ∈ [D∗, N ]. This implies that an = NrdD/F (a)da
−1. Therefore Nn ⊆

(F ∗ ∩N)[D∗, N ]. �

Let N = D∗. Then by above Lemma, for any x ∈ D∗, xn = NrdD/F (x)dx

where dx ∈ D′. This shows that the group G(D) = D∗/F ∗D′ is a torsion group of
bounded exponent n. Some algebraic properties of this group are studied in [4].

In order to describe Platonov’s congruence theorem, we need to recall some con-
cepts from valued division algebras. Let D be a finite dimensional division algebra
with center a Henselian field F . Recall that a valuation v on a field F is called
Henselian if and only if v has a unique extension to each field algebraic over F .
Therefore v has a unique extension denoted also by v to D ([11]). Denote by V D, VF

the valuation rings of v on D and F respectively and let MD,MF denote their max-
imal ideals and D,F their residue division algebra and residue field, respectively.
We let ΓD,ΓF denote the value groups of v on D and F , respectively and UD, UF

the groups of units of VD, VF respectively. Furthermore, we assume that D is a
tame division algebra, i.e., CharF does not divide i(D), the index of D.

Platonov’s congruence theorem asserts that if D is a tame division algebra over
a Henselian field F then (1 + MD) ∩ D(1) ⊆ D′. This is the crucial theorem of
reduced K-theory which is proved in [5] (Note that [5] provides a lengthy and



WEDDERBURN’S FACTORIZATION THEOREM 3

complicated proof for the special case of a complete discrete valuation of rank 1,
and [3] notes that the same proof works for general case of tame Henselian valued
division algebras). Here we give a short and elementary proof of this fact.

Theorem 2 (Congruence Theorem). Let D be a tame division algebra over a

Henselian field F = Z(D), of index n. Then (1 + MD) ∩ D(1) = [D∗, 1 + MD].

Proof. First we show that (1+MF )∩D(1) = 1. Let 1+f ∈ 1+MF . If 1+f ∈ D(1),
then (1 + f)n = 1. But v((1 + f)n − 1) = v(f). This shows that f = 0 and so our
claim. Now take N = 1 + MD. By Lemma 1,

(1 + MD)n ⊆
(

(1 + MD) ∩ F ∗

)[

D∗, (1 + MD)
]

.

Since the valuation is tame and Henselian, Hensel’s lemma shows that (1+MD)n =

1 + MD. Therefore 1 + MD = (1 + MF )
[

D∗, (1 + MD)
]

. Now using the fact that

(1 + MF ) ∩D(1) = 1, the theorem follows. �

Remark. There is an elegant proof of the congruence theorem by A. Suslin in [9],
in the case of a discrete valuation of rank 1. This proof uses substantial results
from valuation theory and the fact that the group SK 1(D) is torsion of bounded
exponent n = i(D). Using results of Ershov in [3], Suslin’s proof can be written for
arbitrary tame Henselian division algebras.

Having the congruence theorem, it is easy to see, in the case of discrete valuation
of rank 1, that the sequence,

SK1(D) → SK1(D) → L1/Lσ−1 → 1,

is exact where L = Nrd(D), L1 = L ∩ N−1

Z(D)/F
(1) and Lσ−1 = the image of L

under the homomorphism a 7→ σ(a)a−1, where 〈σ〉 = Gal(Z(D)/F ). This leads to
computations of SK1(D) for certain division algebras. (See [5], [6] and [9].)

Another look at the proof of Theorem 2 shows that 1 + MD ⊆ (1 + MF )D′ and

therefore 1+MD ⊆ UF D′. Put G(D) = D
∗

/F
∗

D′. In many applications, it is easy
to obtain information about the residue data of division algebras. The following
theorem gives an explicit formula for the group SK1(D) when the group G(D) is
trivial.

Theorem 3. Let D be a tame division algebra over a Henselian field F = Z(D),
of index n. If G(D) = 1 then SK1(D) = µn(F )/Z(D′).

Proof. The reduction map UD −→ D
∗

induces an isomorphism D
∗

−→ UD/1+MD,
a 7→ (1 + MD)a. Since 1 + MD ⊆ UF D′, it follows that

D
∗

/F
∗

D′
'

−→ UD/UF D′.
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Now if G(D) = D
∗

/F
∗

D′ = 1 then UD = UF D′. But D(1) ⊆ UD. This shows that
D(1) = µn(F )D′. Using the fact that µn(F )∩D′ = Z(D′), the theorem follows. �

Note that Hensel’s lemma implies that µn(F ) ' µn(F ). In particular if D is a
totally ramified division algebra, i.e. D = F , then G(D) = 1.

Example 4. Let C be the field of complex numbers and r be a nonnegative integer.
Let D1 = C((x1)) and define σ1 : D1 → D1 by the rule σ1(x1) = −x1. Now
let D2 = D1((x2, σ1)) and set D3 = D2((x3)). Again define σ3 : D3 → D3 by
σ3(x3) = −x3. In general, if i is even, set Di+1 = Di((xi+1)) and if i is odd
define σi : Di → Di by σi(xi) = −xi and Di+1 = Di((xi+1, σi)). By Hilbert’s
construction (see [1], §1 and §24), D = D2r = C((x1, · · · , x2r, σ1, · · · , σ2r−1)) is a
division algebra with center F = C((x2

1, x
2
2, · · · , x2

2r−1, x
2
2r)) and n = i(D) = 2r.

Finally define v : D∗ → ΓD = Z2r by the rule v(
∑

cix
i1
1 · · · xi2r

2r ) = (i1, · · · , i2r)
where i1, · · · , i2r are the smallest powers of the xi’s in the lexicographic order. It can
be observed that v is a tame valuation and D = C and F = C. Therefore G(D) = 1.
Theorem 3 implies that SK1(D) = µn(F )/Z(D′). From the multiplication rule in
D, it follows that

D′ ⊆
{

± 1 +
∑

i>0

cix
i1
1 · · · xi2r

2r

}

.

Since Z(D′) ⊆ µn(F ), it follows that Z(D ′) = {1,−1}. But µn(F ) = µn(F ) = Z2r ,
hence SK1(D) = Z2r−1 .

In [4], as another application of Lemma 1, we obtain theorems of reduced K-
theory which previously required heavy machinery, as simple consequence of this
approach.

Acknowledgments. I wish to thank Anthony Bak who read the note and made
numerous corrections.
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